
Deliver Trusted Data
by Implementing

 in Testing CI/CD ETL

Overview of CI/CD .

Continuous Integration (CI) and Continuous Deployment (CD), also referred to
as continuous delivery or continuous development, were traditionally seen
primarily on application development cycles. Together, these two terms
describe a process where code, whether it's an application, ETL code, or even
database code, is seamlessly released into environments. This process is
facilitated by tools specifically designed to handle the code release with minimal
human intervention. This limited human interaction with the actual release
process reduces errors, thus allowing a team to spend more time on
development work.

DevOps leverages CI/CD to bridge the gap between "development" and
"operations," giving birth to the term DevOps. The concept of DevOps is to assist
organizations at a holistic level to encompass multiple teams and deliver
application changes at a faster pace. This increased delivery speed further aids
in accelerating ETL pipelines and enhancing product quality over traditional
development lifecycle management tools and processes.

QualiZeal 02

QualiZeal 03

CI/CD in ETL Testing

Continuous Integration (CI) defines how developers interact with source control, also referred to as version
control. Here, the term "developers" doesn't strictly denote application developers; it could be anyone who
contributes code in any language and subsequently submits it to source control. Even ETL developers can weave
CI principles into their workflow as they structure data flows.

Developers handle fragments of code, typically in distinct branches. Each of these fragments is systematically
checked into source control by individual developers. Every check-in initiates an automatic build process that
verifies the recently checked-in code and, subsequently, forms a package ready for release (if set up to do so).

Deploying continuous integration brings about several benefits. Firstly, stringent testing can be integrated into
the build process to guarantee the quality of each build. Secondly, continuous integration fosters automation,
effectively removing the human element from deployments, hence improving accuracy and efficiency.

In DevOps, the acronym CD represents two distinct methods regarding the deployment lifecycle: Continuous
Delivery and Continuous Deployment. In the former, code deployment progresses to the stage just prior to
production, enabling a degree of human review to ensure the deployment is fit for the production environment.
On the other hand, Continuous Deployment refers to the practice where code is deployed directly to production
without delay or human intervention. Once the build process is completed and all tests pass, the release is
deployed to the appropriate environments without further checks.

It's essential to note that automated testing broadly falls into two categories. Test Driven Development (TDD)
insists on the ability to test before any code is written. It implies that a valid test must be formulated to verify the
eventual code. Conversely, Code First suggests that the code is penned first, followed by the creation of tests.
Both methods hold their merits and can be fitting for your organization. In either scenario, automated testing
plays a pivotal role in providing faster and more accurate feedback to developers and business users alike. It also
ensures a consistent and manageable testing process, expanding with the increasing code lines. This
automated testing can be integrated into CI/CD using pipelines.

Pipelines, which represent a unique set of grouped tasks, are a crucial element of any CI/CD methodology. Some
sample pipelines might include:

Continuous Integration in DevOps

Continuous Delivery & Continuous Deployment

Build

This stage involves
developing and compiling
application changes.

Deploy

If all tests pass, the
deployment is released to
any or all environments.

Test

Upon successful check-in,
comprehensive testing is
carried out.

Verification

A light (or smoke) test is
performed to ensure
accurate deployment.

QualiZeal 04

CI/CD in ETL Testing

Overview of ETL
ETL stands for Extract, Transform, and Load, a process that involves extracting data from various source

systems, converting it into a standardized data type, and subsequently loading it into a centralized data

repository. In order to ensure data integrity and accuracy post this process, organizations employ a technique

known as ETL testing.

The primary purpose of ETL testing is to verify that the data transferred from the source system to the target

destination remains accurate following the necessary business transformation. This testing process involves

multiple checks and comparisons between the original data and the data at the intended destination.

ETL testing is crucial, particularly due to the potential risk of data loss or corruption. There are several reasons

for this, including:

Heterogeneous Data Sources and Format Transformation:

Growing Volume of Data and Analysis Challenges:

Potential Errors in Data Mapping and Quality Issues:

Data is often collected from a variety of heterogeneous sources and in multiple
formats. This data must then be transformed into a format that aligns with the
design of the intended data warehouse prior to loading.

The volume of data that organizations need to manage is continually increasing.
Experts suggest that the pace of data growth has surpassed our ability to analyze
and organize it effectively.

During the process of data mapping, which merges data fields from the source and
target databases, errors may occur. Issues such as data duplication and reduced
data quality standards are common. ETL testing helps mitigate these issues by
ensuring data consistency and reliability.

QualiZeal 05

CI/CD in ETL Testing

Extract, Transform, Load (ETL) process in Data Warehouse

a) Extraction:

b) Transformation:

The initial phase of the ETL (Extract, Transform, Load) process is extraction. During this stage, data from diverse
source systems, such as relational databases, No SQL, XML, and flat files, is retrieved and transferred to a
staging area. Importantly, data must first be stored in the staging area instead of being directly loaded into the
data warehouse. This precaution is due to the fact that the extracted data, arriving in various formats, could
potentially be corrupt, risking damage to the data warehouse with a challenging rollback process. Hence, the
extraction stage is a crucial component of the ETL process.

The second phase in the ETL process is transformation. Here, a range of rules or functions is applied to the
extracted data to convert it into a standardized format. The transformation may encompass several tasks,
including:

c) Loading:

The third and final phase of the ETL process is loading. This stage sees the transformed data being loaded into
the data warehouse. The data update frequency can range from very frequent updates to updates at longer,
regular intervals. The schedule and rate of loading rely entirely on specific requirements and can vary between
systems.

The ETL process can also employ a pipelining concept. This means that as soon as some data is extracted, it can
be transformed, and during this period, new data can be extracted. Similarly, while the transformed data is being
loaded into the data warehouse, the already extracted data can undergo transformation.

Filtering

Loading select
attributes into the
data warehouse.

Joining

Merging multiple
attributes into one.

Cleaning

Addressing NULL values with default
ones, mapping various country name
representations like "U.S.A," "United
States," and "America" to "USA," etc.

Splitting

Separating a single
attribute into multiple
attributes.

Sorting

 Organizing tuples based
on some attribute
(generally a key
attribute).

Extraction

Transformation

loading

data waregouse

Starting area

Extract data from varisources

Load transdformed data into data warehouse

Transform data into single standard format

Data is now available for use in the data warehouse

QualiZeal 06

CI/CD in ETL Testing

Connection of ETL with Online Analytical Processing
(OLAP) and Online Transactional Processing (OLTP)
systems

The ETL (Extract, Transform, Load) process begins by retrieving data from the Online Transactional Processing
(OLTP) database, a real-time system that handles day-to-day transactions. This data extraction forms the initial
step in the ETL pipeline.

Following extraction, the data is moved to a staging area, where it undergoes a transformation process. This
transformation process is a crucial step that involves data cleansing and optimization. Data cleansing ensures
the removal of anomalies, inaccuracies, and inconsistencies, thus enhancing the overall quality of data.
Optimization, on the other hand, rearranges and formats the data, making it more suitable for analysis. These
two aspects help in molding raw data into insightful information.

Once the data is cleaned and optimized, it's loaded into the next stage of the ETL process - the Online Analytical
Processing (OLAP) database. The OLAP database, often considered synonymous with a data warehouse
environment, is structured in a way that supports complex analytical and ad-hoc queries, unlike the OLTP
database. This structure allows for better performance in managing multi-dimensional data analysis, ensuring
swift data retrieval, and providing robust support for business intelligence and reporting tools.

Therefore, the ETL process serves as a vital bridge connecting OLTP and OLAP systems. It ensures that raw data
from operational systems is transformed into meaningful and valuable insights within the analytical systems,
thus enabling informed business decisions.

OLAP

eLT
process

Data mining, data
analytics and

decision making

Operational Environment

businesss strategy

Business process

Customer/Supplier

Product

transactions

 employees

data warehouse

data mart

OLTP

Informational Environment

3

2

1
6

4

5

QualiZeal 07

CI/CD in ETL Testing

Importance of carefully orchestrated
release processes for ETL

ETL processes are integral components of data operations within an organization. The release processes for ETL
need to be carefully orchestrated for several reasons, including data integrity, system performance, and overall
business impact.

: A poorly managed ETL release can lead to data corruption or loss, either in the source
systems, the ETL pipeline itself, or the target systems (like data warehouses). Hence, a carefully orchestrated
release process ensures that data transformations and migrations are conducted in a secure, controlled
environment to maintain data integrity at all times.

 ETL processes can be resource-intensive, often requiring significant computational
power and bandwidth. They also often involve downtime, during which the systems involved are not fully
operational. Therefore, release processes need to be planned to minimize disruption and to ensure that ETL
operations do not overload systems or degrade performance for other business-critical applications.

 Depending on the nature of the data, ETL processes might be subject to
various regulatory requirements. These could range from data privacy regulations, like GDPR or CCPA, to
industry-specific regulations, like HIPAA in healthcare or SOX in financial services. A well-planned ETL release
process ensures compliance with these requirements and mitigates the risk of data breaches or leaks.

 ETL processes often evolve over time, either because of changes in source or target
systems or due to evolving business needs. Carefully orchestrated release processes allow for a controlled
rollout of these changes, with adequate testing, documentation, and training to ensure that all stakeholders
understand and are prepared for the changes.

 A carefully planned release process includes provisions for tracking,
logging, and monitoring ETL operations. This makes identifying and rectifying issues easier, performing root
cause analyses for problems, and maintaining overall system health. It also supports proactive maintenance and
optimization of ETL pipelines.

 Lastly, well-orchestrated ETL releases ensure business continuity. This means
ensuring that essential operations, particularly those dependent on the data being processed through the ETL
pipeline, can continue uninterrupted. In addition, this involves having a robust contingency plan in case things
go wrong during the release.

Data Integrity

System Performance:

Compliance and Security:

Change Management:

Debugging and Maintenance:

Business Continuity:

QualiZeal 08

CI/CD in ETL Testing

Implementing CI/CD in ETL Testing
Step 1: Select an Integrator
 

Step 2: Establish the Source Code Repository

Step 3: Develop an ETL Code Execution Script

An integrator is a crucial tool that brings together all the elements of ETL testing for ongoing validation
processes. Its role is akin to a translator, transforming the output from one component into an input that another
component can use. To prompt appropriate actions within each component, the output should be in a form the
integrator can readily decipher. This often involves creating scripts for job execution or data validation.

When choosing an integrator, keep these important factors in mind:

 Plugin Availability: The integrator links various components via plugins that facilitate and perform the
necessary operations. This makes plugin availability a vital factor when selecting an integrator

 User-friendliness: It should be straightforward to configure the integrator to perform the required
functions

 Cost-effectiveness: Depending on the needs, you can opt for either a free, open-source integrator or a
licensed one.

A source code repository is where all ETL job execution and data validation scripts are housed, enabling users to
readily access the most recent versions. The integrator is linked to this repository, and upon activation, it
retrieves the latest version of the relevant component (be it an ETL job execution or a validation script).

In certain instances, the actual code may be stored in the source code repository alongside the validation
components. In such cases, the integrator can be programmed to run the ETL job execution and validation
wrapper whenever there are changes in the code within the repository. This automated mechanism ensures that
validations are properly initiated following code modifications, eliminating the need for manual intervention.

It's essential to construct a wrapper script that runs ETL jobs in the correct sequence. The design of the script
should be such that if any ETL job fails, the wrapper's status changes to 'fail'. This status should be relayed to the
integrator, allowing it to generate an appropriate response. Conversely, if the wrapper script status is 'pass', the
integrator should initiate the subsequent action in the workflow.

QualiZeal 09

CI/CD in ETL Testing

Step 4: Outline the Data Validation Strategy
 

Step 5: Integrate ETL Code Execution and Data Validation Tasks

Step 6: Implement Automated Status Reporting

Step 7: Develop the Deployment Script

It's vital to construct the validation script in such a way that it executes on the same server as the ETL job. This
approach removes the need for manual intervention to execute validation queries on the database through an
interface. Once the ETL job execution wrapper finishes successfully, the integrator should trigger the validation
script.

If data validation occurs within the database, the validation wrapper should establish a connection to the
database from the server, execute data validation queries, and record these results. The outcome format (either
'pass' or 'fail') should be easily understood by the validation script and transmitted to the integrator to generate
the appropriate response.

In situations where it's necessary to validate output or intermediate files on the server, the validation script
should be executed there. The results (either 'pass' or 'fail') should be recorded in a format that is easy to
understand. These results are then conveyed to the integrator to produce the desired response.

Occasionally, the ETL job execution takes place after data validation, with these two steps being interconnected.
In such instances, a comprehensive wrapper can be developed. This wrapper encapsulates both the validation
and the ETL job execution wrappers and supplies the input to the integrator. This integrated wrapper proves
beneficial for regression testing where existing ETL jobs and validation queries need to be rerun.

Throughout the continuous integration workflow lifecycle, updates on the execution status are reflected in a
test management or user stories tracking tool. This delivers a real-time snapshot of the execution status during
development sprints. After data validation is finalized, the status is updated in the tracking tool. An email
summarizing these details is sent out to confirm the status of both the job execution and data validation.

A deployment script needs to be created and connected to the integrator in such a way that it initiates code
deployment autonomously once the continuous integration workflow is successfully completed. This setup
eliminates the need for manual intervention in the deployment process.

CI/CD in ETL Testing

Role of Source Control in Modern
Development

QualiZeal 10

Although continuous integration is a significant aspect of modern development, source control remains the
cornerstone of modern development. It is essential to maintain all types of coding efforts, including application
code, database code (considering database queries and updates are fundamentally code), and ETL code in a
source control repository. Presently, there's a plethora of source control vendors to choose from, each providing
diverse features catering to an array of requirements.

Source control is instrumental in managing and tracking code modifications. It serves as a key component in the
continuous integration lifecycle, initiating with a code change check-in to a repository. Typically, a commit to the
main branch of the source control triggers the integration and build process, which ultimately culminates in
continuous delivery or deployment.

If your goal is to adopt continuous integration and continuous deployment practices, beginning with source
control is a wise move. This is the foundational step upon which you can construct automated deployments to
your respective environments.

QualiZeal 10

QualiZeal 11

CI/CD in ETL Testing

Extract, Transform, Load (ETL) processes necessitate a
structured approach to testing in order to ensure data integrity,
quality, and consistency. Implementing Continuous Integration
(CI) and Continuous Deployment (CD) as part of your ETL testing
strategy can significantly streamline this endeavor. However, the
successful application of CI/CD to ETL testing involves adherence
to some number of best practices.

Automate Testing
Processes: Automation is key to
successful CI/CD implementation.
Automate testing at each stage of
the ETL process to increase efficiency
and reduce manual errors. Automated
testing facilitates faster identification
of problems, allowing your team to
resolve them quickly and maintain
progress.

Leverage Containerization:
Using container technologies like
Docker can significantly simplify the
setup of testing environments.
Containers ensure a consistent
environment across the CI/CD
pipeline, reducing discrepancies
between testing and production
environments and making it easier to
identify and resolve issues.

Utilize Version Control Systems:
Adopting a version control system is
crucial for managing changes in
codebase, scripts, and other
components. This ensures that all
modifications are tracked, enabling
rollback to previous versions if any
issues arise. This promotes the
seamless integration and deployment of
new code, critical to a successful CI/CD
process.

Regularly Review and Update
Test Cases: Just as data and
business requirements evolve, so
should your test cases. Regularly
review and update test cases to ensure
they reflect current business logic and
data structures. This helps to maintain
the relevance and effectiveness of your
CI/CD in ETL testing.

Prioritize Comprehensive Test
Coverage: Ensure that all aspects
of the ETL process are adequately
covered during testing. This includes
testing source data extraction,
transformation logic, loading into
the target system, and the final
output validation. This helps in
promptly detecting and rectifying
errors, thus improving data quality
and reliability.

Implement Monitoring and
Alerting: Regularly monitor the ETL
process to identify any performance
issues or errors. Implement a robust
alerting system that provides real-
time notifications of any failures.
This enables quick detection and
resolution, which is essential for
maintaining the CI/CD pipeline's
effectiveness.

Ensure Robust Rollback
Mechanisms: Even with
meticulous testing, issues can slip
into production. Establish robust
rollback mechanisms to quickly
revert to a previous stable state in
case of any failures in the
production environment. This
reduces potential downtime and
minimizes impact on end-users.

Best Practices for Implementing CI/CD in ETL
Testing

CI/CD in ETL Testing

QualiZeal 12

Implementing Continuous Integration (CI) and Continuous
Deployment (CD) in Extract, Transform, Load (ETL) testing can
significantly enhance your data pipeline's reliability, efficiency,
and robustness. This modern approach brings a variety of
advantages that directly impact the quality and velocity of
software delivery.

Increased Efficiency: With
automated testing and deployment,
manual errors are reduced, and the
deployment process becomes faster
and more streamlined. The
automation element of CI/CD allows
your team to focus on developing new
features and improving the system
instead of spending time on tedious
manual testing and deployment
processes.

Risk Mitigation: With CI/CD,
changes are integrated and tested
continuously, leading to smaller, more
manageable increments. This
strategy significantly reduces the risk
of deployment failures and major
system issues. Additionally, the
presence of robust rollback
mechanisms ensures quick recovery
in case of any problems.

Faster Problem Identification and
Resolution: CI/CD ensures that bugs
and other issues are detected and
addressed promptly. By integrating and
testing changes continually, problems
are discovered almost as soon as they
are introduced. This means they can be
corrected immediately, thereby
maintaining the health of your ETL
processes.

Accelerated Time to Market:
Continuous Deployment means that
new features and improvements are
continually being pushed to
production. This results in faster
delivery of features to end users and a
quicker response to market changes.
With CI/CD, your business can maintain
a competitive edge through rapid
innovation and improvement.

Enhanced Code Quality: CI/CD
encourages developers to make
frequent, small updates to the
codebase. This practice results in
fewer merge conflicts, fewer bugs,
and, ultimately, higher code quality.
Through continuous testing and
integration, problems are detected
earlier, when they are easier and less
costly to fix.

Greater Consistency: CI/CD
promotes consistency by
standardizing the tools and
processes used for testing and
deployment. This reduces variability,
making it easier to predict and
manage the behavior of the system.
Furthermore, the use of
containerization technologies
ensures consistency across
different environments.

Improved Team Collaboration
and Morale: CI/CD practices foster
greater transparency and
communication among team
members. By integrating work
frequently, team members stay
aware of each other's changes and
can collaborate more effectively.
This often results in better morale
and a more productive, harmonious
working environment.

Benefits and Impact of Implementing CI/CD in
ETL Testing

CI/CD in ETL Testing

Experience
Superior ETL

Testing
Services with

QualiZeal:

Affordable, Comprehensive,
and Expert Solutions

QualiZeal 13

Our ETL testing services at QualiZeal are purpose-

driven, economical, and yield highly effective

outcomes. We hold a dominant position in this

sector, and choosing QualiZeal as your ETL services

partner will facilitate rapid results without

compromising on affordability.

Leveraging our professional teams equipped with

advanced tools, we provide superior ETL services

that help you unlock the full potential of your data. If

you seek dependable, efficient, and cost-friendly

solutions for your ETL Testing outsourcing needs,

reach out to our team today. Experience the

efficiency of our skilled testers, supported by our

top-tier infrastructure, as they deliver exceptionally

effective results!

QualiZeal 14

CI/CD in ETL Testing

Why most American software firms trust
QualiZeal for outsourcing their ETL and Data
Warehouse services?

Superior Infrastructure and Tools

Comprehensive Services

Expertise

Economical Solutions

Independent Verification

Our state-of-the-art infrastructure, complemented by the latest tools, allows us to deliver efficient results

promptly.

Our all-inclusive services bundle test automation, SAP testing, and Managed testing under a single umbrella.

We boast a pool of highly competent teams with extensive experience in ETL testing. Our team members are

proficient in conducting, analyzing, and delivering the most effective results.

High-quality ETL testing services don’t always have to come with a hefty price tag. At QualiZeal, we offer

advanced ETL testing services at highly competitive rates.

We provide independent verification and validation of your ETL process when necessary.

QualiZeal 14

